Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.019
Filtrar
1.
PLoS Negl Trop Dis ; 17(8): e0011552, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37603573

RESUMO

Cutaneous leishmaniasis exhibits a spectrum of clinical presentations dependent upon the parasites' persistence and host immunopathologic responses. Although cytolytic CD8 T cells cannot control the parasites, they significantly contribute to pathologic responses. In a murine model of cutaneous leishmaniasis, we previously found that NKG2D plays a role in the ability of cytolytic CD8 T cells to promote disease in leishmanial lesions. Here, we investigated whether NKG2D plays a role in human disease. We found that NKG2D and its ligands were expressed within lesions from L. braziliensis-infected patients and that IL-15 and IL-1ß were factors driving NKG2D and NKG2D ligand expression, respectively. Blocking NKG2D reduced degranulation by CD8 T cells in a subset of patients. Additionally, our transcriptional analysis of patients' lesions found that patients who failed the first round of treatment exhibited higher expression of KLRK1, the gene coding for NKG2D, than those who responded to treatment. These findings suggest that NKG2D may be a promising therapeutic target for ameliorating disease severity in cutaneous leishmaniasis caused by L. braziliensis infection.


Assuntos
Linfócitos T CD8-Positivos , Leishmaniose Cutânea , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Leishmania , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Falha de Tratamento
2.
PLoS One ; 17(2): e0263993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35167596

RESUMO

BACKGROUND: Leishmania (L) parasite, the causative agent of zoonotic cutaneous leishmaniasis (ZCL), effectively stimulates the mammalian cells to mount strong humoral responses by enhancing T-helper-2 (Th2)-associated cytokines for its survival. The best strategy to decrease the intensity of infection in the host is induction of cellular immunity. METHODS: We evaluated the effects of the empty bacterial pcDNA3 plasmid on mice infected with L. major and quantified the immune mediators including IFN-γ, IL-4, IL-10, IgG2a, IgG1, arginase activity and nitric oxide (NO) in the mice. Moreover, the footpad lesion size and parasite load were assessed. RESULTS: We observed that pcDNA3 could modulate the immune responses in favor of host cells and decrease the disease severity. Th2- associated mediators, including arginase, IL-4, and IL-10 are downregulated, while cellular responses are upregulated in line with an increase in the levels of nitric oxide (NO) and interfero-gamma (IFN-γ). Interestingly, pcDNA3 induced specific Th1-associated antibodies, IgG2a isotype; however, it suppressed the production of humoral IgG1. The stimulation of the immune response by the empty pcDNA3 is able to shift the immune function to predominant cellular responses caused by Th1, and it had a positive effect on the treatment of zoonotic cutaneous leishmaniasis (ZCL). CONCLUSIONS: Altogether, we introduced the pcDNA3 as a potential interfering factor in the modulation of the immune system against ZCL. Since this vector has been widely used as a control group in different studies, we suggest that the potential function of the empty vector should be deeply assessed, as it exerts anti-parasitic effects on mice infected with L. major.


Assuntos
Leishmania major/imunologia , Leishmaniose Cutânea/prevenção & controle , Plasmídeos/imunologia , Células Th2/imunologia , Animais , Arginase/metabolismo , Feminino , Imunoglobulina G/metabolismo , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Leishmania major/patogenicidade , Leishmaniose Cutânea/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Plasmídeos/genética
3.
Iran Biomed J ; 26(2): 99-109, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35090305

RESUMO

The heterogeneity of CD4+ T cells has been investigated since the late 1970s, when their Th1 and Th2 subsets were coined. Later studies on the cutaneous form of the Leishmaniasis were focused on the experimental models of Leishmania major infection using the susceptible BALB/c and the resistant C57BL/6 mice. At the early 21st century, the regulatory T-cells subpopulation was introduced and its role in concomitant immunity, responsible for lifelong resistance of the host to the reinfection was proposed. Subsequent studies, mainly focused on the visceral form of the infection pointed to the role of IL-17, produced by Th17 subset of CD4+ T cells that along the neutrophils were shown to have important yet equivocal functions in protection against or exacerbation of the infection. Altogether, the current knowledge indicates that the above four subsets could orchestrate the immune, the regulatory and the inflammatory responses of the host against different forms of leishmaniases.


Assuntos
Imunidade Adaptativa , Linfócitos T CD4-Positivos/imunologia , Imunidade Inata , Leishmaniose Cutânea/imunologia , Leishmaniose Visceral/imunologia , Subpopulações de Linfócitos T/imunologia , Humanos
5.
PLoS Pathog ; 18(1): e1010247, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041723

RESUMO

Neutrophils are the first line of defence against invading pathogens. Although neutrophils are well-known professional killers, some pathogens including Leishmania (L.) parasites survive in neutrophils, using these cells to establish infection. Manipulation of neutrophil recruitment to the infection site is therefore of interest in this cutaneous disease. The c-MET tyrosine kinase receptor was shown to promote neutrophil migration to inflamed sites. Here, we investigated the importance of c-MET expression on neutrophils in their recruitment to the infection site and the role of c-Met expression in the pathology of leishmaniasis. Following infection with L. mexicana, mice with conditional deletion of c-MET in neutrophils controlled significantly better their lesion development and parasite burden compared to similarly infected wild type mice. Our data reveal a specific role for c-MET activation in Leishmania-induced neutrophil infiltration, a process correlating with their negative role in the pathology of the diseases. We further show that c-MET phosphorylation is observed in established cutaneous lesions. Exposure to L. mexicana upregulated c-Met expression predominantly in infected neutrophils and c-Met expression influenced ROS release by neutrophils. In addition, pharmacological inhibition of c-MET, administrated once the lesion is established, induced a significant decrease in lesion size associated with diminished infiltration of neutrophils. Both genetic ablation of c-MET in neutrophils and systemic inhibition of c-MET locally resulted in higher levels of CD4+T cells producing IFNγ, suggesting a crosstalk between neutrophils and these cells. Collectively, our data show that c-MET activation in neutrophils contributes to their recruitment following infection, and that L. mexicana induction of c-MET on neutrophils impacts the local pathology associated with this disease. Our results suggest a potential use for this inhibitor in the control of the cutaneous lesion during this parasitic infection.


Assuntos
Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/patologia , Neutrófilos/imunologia , Proteínas Proto-Oncogênicas c-met/imunologia , Animais , Leishmaniose Cutânea/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Infiltração de Neutrófilos/imunologia , Proteínas Proto-Oncogênicas c-met/metabolismo
6.
PLoS One ; 16(12): e0262158, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34972189

RESUMO

Leishmaniasis is a disease caused by the protozoan parasite Leishmania and is known to affect millions of individuals worldwide. In recent years, we have established the critical role played by Leishmania zinc-metalloprotease GP63 in the modulation of host macrophage signalling and functions, favouring its survival and progression within its host. Leishmania major lacking GP63 was reported to cause limited infection in mice, however, it is still unclear how GP63 may influence the innate inflammatory response and parasite survival in an in vivo context. Therefore, we were interested in analyzing the early innate inflammatory events upon Leishmania inoculation within mice and establish whether Leishmania GP63 influences this initial inflammatory response. Experimentally, L. major WT (L. majorWT), L. major GP63 knockout (L. majorKO), or L. major GP63 rescue (L. majorR) were intraperitoneally inoculated in mice and the inflammatory cells recruited were characterized microscopically and by flow cytometry (number and cell type), and their infection determined. Pro-inflammatory markers such as cytokines, chemokines, and extracellular vesicles (EVs, e.g. exosomes) were monitored and proteomic analysis was performed on exosome contents. Data obtained from this study suggest that Leishmania GP63 does not significantly influence the pathogen-induced inflammatory cell recruitment, but rather their activation status and effector function. Concordantly, internalization of promastigotes during early infection could be influenced by GP63 as fewer L. majorKO amastigotes were found within host cells and appear to maintain in host cells over time. Collectively this study provides a clear analysis of innate inflammatory events occurring during L. major infection and further establish the prominent role of the virulence factor GP63 to provide favourable conditions for host cell infection.


Assuntos
Leishmania major/metabolismo , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Leishmaniose/imunologia , Leishmaniose/parasitologia , Metaloendopeptidases/química , Animais , Biologia Computacional , Exossomos/metabolismo , Feminino , Interações Hospedeiro-Parasita/fisiologia , Inflamação/imunologia , Inflamação/metabolismo , Leishmania , Metaloproteases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Proteômica/métodos , RNA-Seq
7.
Front Immunol ; 12: 730437, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745100

RESUMO

Innate immune cells present a dual role during leishmaniasis: they constitute the first line of host defense but are also the main host cells for the parasite. Response against the infection that results in the control of parasite growth and lesion healing depends on activation of macrophages into a classical activated phenotype. We report an essential role for the microbiota in driving macrophage and monocyte-derived macrophage activation towards a resistance phenotype against Leishmania major infection in mice. Both germ-free and dysbiotic mice showed a higher number of myeloid innate cells in lesions and increased number of infected cells, mainly dermal resident and inflammatory macrophages. Despite developing a Th1 immune response characterized by the same levels of IFN-γ production as the conventional mice, germ-free mice presented reduced numbers of iNOS+ macrophages at the peak of infection. Absence or disturbance of host microbiota impaired the capacity of bone marrow-derived macrophage to be activated for Leishmania killing in vitro, even when stimulated by Th1 cytokines. These cells presented reduced expression of inos mRNA, and diminished production of microbicidal molecules, such as ROS, while presenting a permissive activation status, characterized by increased expression of arginase I and il-10 mRNA and higher arginase activity. Colonization of germ-free mice with complete microbiota from conventional mice rescued their ability to control the infection. This study demonstrates the essential role of host microbiota on innate immune response against L. major infection, driving host macrophages to a resistance phenotype.


Assuntos
Imunidade Inata , Leishmania major/patogenicidade , Leishmaniose Cutânea/microbiologia , Ativação de Macrófagos , Macrófagos/microbiologia , Microbiota , Animais , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Disbiose , Feminino , Vida Livre de Germes , Interações Hospedeiro-Patógeno , Leishmania major/imunologia , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/microbiologia
8.
Cell Rep ; 37(2): 109816, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34644571

RESUMO

Cytokines are typically single gene products, except for the heterodimeric interleukin (IL)-12 family. The two subunits (IL-12p40 and IL-12p35) of the prototype IL-12 are known to be simultaneously co-expressed in activated myeloid cells, which secrete the fully active heterodimer to promote interferon (IFN)γ production in innate and adaptive cells. We find that chimeric mice containing mixtures of cells that can only express either IL-12p40 or IL-12p35, but not both together, generate functional IL-12. This alternate two-cell pathway requires IL-12p40 from hematopoietic cells to extracellularly associate with IL-12p35 from radiation-resistant cells. The two-cell mechanism is sufficient to propel local T cell differentiation in sites distal to the initial infection and helps control systemic dissemination of a pathogen, although not parasite burden, at the site of infection. Broadly, this suggests that early secretion of IL-12p40 monomers by sentinel cells at the infection site may help prepare distal host tissues for potential pathogen arrival.


Assuntos
Células Dendríticas/metabolismo , Subunidade p35 da Interleucina-12/metabolismo , Subunidade p40 da Interleucina-12/metabolismo , Leishmania major/patogenicidade , Leishmaniose Cutânea/metabolismo , Células Estromais/metabolismo , Linfócitos T/metabolismo , Animais , Comunicação Celular , Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Parasita , Interferon gama/metabolismo , Subunidade p35 da Interleucina-12/genética , Subunidade p40 da Interleucina-12/genética , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Multimerização Proteica , Transdução de Sinais , Células Estromais/imunologia , Células Estromais/parasitologia , Linfócitos T/imunologia , Linfócitos T/parasitologia
9.
J Clin Invest ; 131(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34609968

RESUMO

Cutaneous leishmaniasis (CL) is caused by Leishmania donovani in Sri Lanka. Pentavalent antimonials (e.g., sodium stibogluconate [SSG]) remain first-line drugs for CL with no new effective treatments emerging. We studied whole blood and lesion transcriptomes from Sri Lankan patients with CL at presentation and during SSG treatment. From lesions but not whole blood, we identified differential expression of immune-related genes, including immune checkpoint molecules, after onset of treatment. Using spatial profiling and RNA-FISH, we confirmed reduced expression of programmed death-ligand 1 (PD-L1) and indoleamine 2,3-dioxygenase 1 (IDO1) proteins on treatment in lesions of a second validation cohort and further demonstrated significantly higher expression of these checkpoint molecules on parasite-infected compared with noninfected lesional CD68+ monocytes and macrophages. Crucially, early reduction in PD-L1 but not IDO1 expression was predictive of rate of clinical cure (HR = 4.88) and occurred in parallel with reduction in parasite load. Our data support a model whereby the initial anti-leishmanial activity of antimonial drugs alleviates checkpoint inhibition on T cells, facilitating immune-drug synergism and clinical cure. Our findings demonstrate that PD-L1 expression can be used as a predictor of rapidity of clinical response to SSG treatment in Sri Lanka and support further evaluation of PD-L1 as a host-directed therapeutic in leishmaniasis.


Assuntos
Antígeno B7-H1/fisiologia , Leishmaniose Cutânea/tratamento farmacológico , Adulto , Gluconato de Antimônio e Sódio/uso terapêutico , Antígeno B7-H1/análise , Feminino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/análise , Leishmaniose Cutânea/imunologia , Masculino , Adulto Jovem
10.
Front Immunol ; 12: 706510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691019

RESUMO

Human cutaneous leishmaniasis (CL) caused by Leishmania braziliensis is characterized by a pronounced inflammatory response associated with ulcer development. Monocytes/macrophages, the main cells harboring parasites, are largely responsible for parasite control. Toll-like receptor (TLR) signaling leads to the transcription of inflammatory mediators, such as IL-1ß and TNF during innate immune response. TLR antagonists have been used in the treatment of inflammatory disease. The neutralization of these receptors may attenuate an exacerbated inflammatory response. We evaluated the ability of TLR2 and TLR4 antagonists to modulate host immune response in L. braziliensis-infected monocytes and cells from CL patient skin lesions. Following TLR2 and TLR4 neutralization, decreased numbers of infected cells and internalized parasites were detected in CL patient monocytes. In addition, reductions in oxidative burst, IL-1ß, TNF and CXCL9 production were observed. TNF production by cells from CL lesions also decreased after TLR2 and TLR4 neutralization. The attenuation of host inflammatory response after neutralizing these receptors suggests the potential of TLR antagonists as immunomodulators in association with antimonial therapy in human cutaneous leishmaniasis.


Assuntos
Leishmaniose Cutânea/imunologia , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/antagonistas & inibidores , Adolescente , Adulto , Células Cultivadas , Feminino , Humanos , Inflamação/imunologia , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Carga Parasitária , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Adulto Jovem
11.
PLoS Pathog ; 17(10): e1009693, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34699567

RESUMO

Innate lymphoid cells (ILCs) comprise a heterogeneous population of immune cells that maintain barrier function and can initiate a protective or pathological immune response upon infection. Here we show the involvement of IL-17A-producing ILCs in microbiota-driven immunopathology in cutaneous leishmaniasis. IL-17A-producing ILCs were RORγt+ and were enriched in Leishmania major infected skin, and topical colonization with Staphylococcus epidermidis before L. major infection exacerbated the skin inflammatory responses and IL-17A-producing RORγt+ ILC accumulation without impacting type 1 immune responses. IL-17A responses in ILCs were directed by Batf3 dependent CD103+ dendritic cells and IL-23. Moreover, experiments using Rag1-/- mice established that IL-17A+ ILCs were sufficient in driving the inflammatory responses as depletion of ILCs or neutralization of IL-17A diminished the microbiota mediated immunopathology. Taken together, this study indicates that the skin microbiota promotes RORγt+ IL-17A-producing ILCs, which augment the skin inflammation in cutaneous leishmaniasis.


Assuntos
Células Dendríticas/imunologia , Interleucina-17/imunologia , Leishmaniose Cutânea/imunologia , Linfócitos/imunologia , Pele/microbiologia , Animais , Dermatite/imunologia , Dermatite/microbiologia , Imunidade Inata/imunologia , Leishmaniose Cutânea/microbiologia , Camundongos
12.
Front Immunol ; 12: 728848, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557194

RESUMO

Intracellular phagosomal pathogens represent a formidable challenge for innate immune cells, as, paradoxically, these phagocytic cells can act as both host cells that support pathogen replication and, when properly activated, are the critical cells that mediate pathogen elimination. Infection by parasites of the Leishmania genus provides an excellent model organism to investigate this complex host-pathogen interaction. In this review we focus on the dynamics of Leishmania amazonensis infection and the host innate immune response, including the impact of the adaptive immune response on phagocytic host cell recruitment and activation. L. amazonensis infection represents an important public health problem in South America where, distinct from other Leishmania parasites, it has been associated with all three clinical forms of leishmaniasis in humans: cutaneous, muco-cutaneous and visceral. Experimental observations demonstrate that most experimental mouse strains are susceptible to L. amazonensis infection, including the C57BL/6 mouse, which is resistant to other species such as Leishmania major, Leishmania braziliensis and Leishmania infantum. In general, the CD4+ T helper (Th)1/Th2 paradigm does not sufficiently explain the progressive chronic disease established by L. amazonensis, as strong cell-mediated Th1 immunity, or a lack of Th2 immunity, does not provide protection as would be predicted. Recent findings in which the balance between Th1/Th2 immunity was found to influence permissive host cell availability via recruitment of inflammatory monocytes has also added to the complexity of the Th1/Th2 paradigm. In this review we discuss the roles played by innate cells starting from parasite recognition through to priming of the adaptive immune response. We highlight the relative importance of neutrophils, monocytes, dendritic cells and resident macrophages for the establishment and progressive nature of disease following L. amazonensis infection.


Assuntos
Imunidade Adaptativa , Sistema Imunitário/parasitologia , Imunidade Inata , Leishmania braziliensis/patogenicidade , Leishmaniose Cutânea/parasitologia , Leishmaniose Visceral/parasitologia , Fagocitose , Fagossomos/parasitologia , Animais , Doença Crônica , Interações Hospedeiro-Parasita , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Leishmania braziliensis/imunologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/metabolismo , Leishmaniose Mucocutânea/imunologia , Leishmaniose Mucocutânea/metabolismo , Leishmaniose Mucocutânea/parasitologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/metabolismo , Fagossomos/imunologia , Fagossomos/metabolismo
13.
PLoS Pathog ; 17(9): e1008768, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34559857

RESUMO

Trypanosome Lytic Factor (TLF) is a primate-specific high-density lipoprotein (HDL) complex that, through the cation channel-forming protein apolipoprotein L-1 (APOL1), provides innate immunity to select kinetoplastid parasites. The immunoprotective effects of TLF have been extensively investigated in the context of its interaction with the extracellular protozoan Trypanosoma brucei brucei, to which it confers sterile immunity. We previously showed that TLF could act against an intracellular pathogen Leishmania, and here we dissected the role of TLF and its synergy with host-immune cells. Leishmania major is transmitted by Phlebotomine sand flies, which deposit the parasite intradermally into mammalian hosts, where neutrophils are the predominant phagocytes recruited to the site of infection. Once in the host, the parasites are phagocytosed and shed their surface glycoconjugates during differentiation to the mammalian-resident amastigote stage. Our data show that mice producing TLF have reduced parasite burdens when infected intradermally with metacyclic promastigotes of L. major, the infective, fly-transmitted stage. This TLF-mediated reduction in parasite burden was lost in neutrophil-depleted mice, suggesting that early recruitment of neutrophils is required for TLF-mediated killing of L. major. In vitro we find that only metacyclic promastigotes co-incubated with TLF in an acidic milieu were lysed. However, amastigotes were not killed by TLF at any pH. These findings correlated with binding experiments, revealing that labeled TLF binds specifically to the surface of metacyclic promastigotes, but not to amastigotes. Metacyclic promastigotes of L. major deficient in the synthesis of surface glycoconjugates LPG and/or PPG (lpg1- and lpg5A-/lpg5B- respectively) whose absence mimics the amastigote surface, were resistant to TLF-mediated lysis. We propose that TLF binds to the outer surface glycoconjugates of metacyclic promastigotes, whereupon it kills the parasite in the acidic phagosome of phagocytes. We hypothesize that resistance to TLF requires shedding of the surface glycoconjugates, which occurs several hours after phagocytosis by immune cells, creating a relatively short-lived but effective window for TLF to act against Leishmania.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Imunidade Inata , Leishmaniose Cutânea , Lipoproteínas HDL/metabolismo , Animais , Humanos , Leishmania major , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/metabolismo , Leishmaniose Cutânea/patologia , Lipoproteínas HDL/imunologia , Camundongos
14.
PLoS Pathog ; 17(9): e1009944, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34543348

RESUMO

Intracellular infection with the parasite Leishmania major features a state of concomitant immunity in which CD4+ T helper 1 (Th1) cell-mediated immunity against reinfection coincides with a chronic but sub-clinical primary infection. In this setting, the rapidity of the Th1 response at a secondary site of challenge in the skin represents the best correlate of parasite elimination and has been associated with a reversal in Leishmania-mediated modulation of monocytic host cells. Remarkably, the degree to which Th1 cells are absolutely reliant upon the time at which they interact with infected monocytes to mediate their protective effect has not been defined. In the present work, we report that CXCR3-dependent recruitment of Ly6C+ Th1 effector (Th1EFF) cells is indispensable for concomitant immunity and acute (<4 days post-infection) Th1EFF cell-phagocyte interactions are critical to prevent the establishment of a permissive pathogen niche, as evidenced by altered recruitment, gene expression and functional capacity of innate and adaptive immune cells at the site of secondary challenge. Surprisingly, provision of Th1EFF cells after establishment of the pathogen niche, even when Th1 cells were provided in large quantities, abrogated protection, Th1EFF cell accumulation and IFN-γ production, and iNOS production by inflammatory monocytes. These findings indicate that protective Th1 immunity is critically dependent on activation of permissive phagocytic host cells by preactivated Th1EFF cells at the time of infection.


Assuntos
Imunidade Celular/imunologia , Leishmaniose Cutânea/imunologia , Monócitos/imunologia , Células Th1/imunologia , Animais , Leishmania major/imunologia , Camundongos Endogâmicos C57BL
15.
Front Immunol ; 12: 647987, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248935

RESUMO

Cutaneous leishmaniasis caused by L. braziliensis induces a pronounced Th1 inflammatory response characterized by IFN-γ production. Even in the absence of parasites, lesions result from a severe inflammatory response in which inflammatory cytokines play an important role. Different approaches have been used to evaluate the therapeutic potential of orally administrated heat shock proteins (Hsp). These proteins are evolutionarily preserved from bacteria to humans, highly expressed under inflammatory conditions and described as immunodominant antigens. Tolerance induced by the oral administration of Hsp65 is capable of suppressing inflammation and inducing differentiation in regulatory cells, and has been successfully demonstrated in several experimental models of autoimmune and inflammatory diseases. We initially administered recombinant Lactococcus lactis (L. lactis) prior to infection as a proof of concept, in order to verify its immunomodulatory potential in the inflammatory response arising from L. braziliensis. Using this experimental approach, we demonstrated that the oral administration of a recombinant L. lactis strain, which produces and secretes Hsp65 from Mycobacterium leprae directly into the gut, mitigated the effects of inflammation caused by L. braziliensis infection in association or not with PAM 3CSK4 (N-α-Palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-L-cysteine, a TLR2 agonist). This was evidenced by the production of anti-inflammatory cytokines and the expansion of regulatory T cells in the draining lymph nodes of BALB/c mice. Our in vitro experimental results suggest that IL-10, TLR-2 and LAP are important immunomodulators in L. braziliensis infection. In addition, recombinant L. lactis administered 4 weeks after infection was observed to decrease lesion size, as well as the number of parasites, and produced a higher IL-10 production and decrease IFN-γ secretion. Together, these results indicate that Hsp65-producing L. lactis can be considered as an alternative candidate for treatment in both autoimmune diseases, as well as in chronic infections that cause inflammatory disease.


Assuntos
Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/metabolismo , Chaperonina 60/administração & dosagem , Chaperonina 60/metabolismo , Tolerância Imunológica/efeitos dos fármacos , Lactococcus lactis/metabolismo , Leishmania braziliensis/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Mycobacterium leprae/enzimologia , Administração Oral , Animais , Proteínas de Bactérias/genética , Chaperonina 60/genética , Citocinas/metabolismo , Feminino , Inflamação/tratamento farmacológico , Inflamação/imunologia , Lactococcus lactis/genética , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Organismos Geneticamente Modificados/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia
16.
Front Immunol ; 12: 656919, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276650

RESUMO

The golden hamster is a suitable model for studying cutaneous leishmaniasis (CL) due to Leishmania (Viannia) braziliensis. Immunopathological mechanisms are well established in the L. (L.) major-mouse model, in which IL-4 instructs a Th2 response towards progressive infection. In the present study, we evaluated the natural history of L. braziliensis infection from its first stages up to lesion establishment, with the aim of identifying immunological parameters associated with the disease outcome and parasitism fate. To this end, hamsters infected with 104, 105, or 106 promastigotes were monitored during the first hours (4h, 24h), early (15 days, 30 days) and late (50 days) post-infection (pi) phases. Cytokines, iNOS and arginase gene expression were quantified in the established lesions by reverse transcription-quantitative PCR. Compared to the 105 or 106 groups, 104 animals presented lower lesions sizes, less tissue damage, and lower IgG levels. Basal gene expression in normal skin was high for TGF-ß, and intermediary for TNF, IL-6, and IL-4. At 4hpi, no cytokine induction was observed in the 104 group, while an upregulation of IL-6, IL-10, and IL-4 was observed in the 106 group. At 15dpi, lesion appearance was accompanied by an increased expression of all assessed cytokines, markedly in the 105 and 106 groups. Upregulation of all investigated cytokines was observed in the late phase, although less expressive in the 104 group. IFN-γ was the depending variable influencing tissue damage, while IL-6 was associated to parasite load. The network correlating gene expression and clinical and laboratorial parameters indicated inoculum-independent associations at 15 and 30dpi. A strong positive network correlation was observed in the 104 group, but not in the 105 or 106 groups. In conclusion, IL-4, IL-6, IL-10, and TGF-ß are linked o L. braziliensis progression. However, a balanced cytokine network is the key for an immune response able to reduce the ongoing infection and reduce pathological damage.


Assuntos
Citocinas/metabolismo , Leishmania braziliensis/imunologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/metabolismo , Leishmaniose Cutânea/parasitologia , Transdução de Sinais , Animais , Biomarcadores , Biologia Computacional/métodos , Cricetinae , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Expressão Gênica , Interações Hospedeiro-Parasita/imunologia , Imunomodulação , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Carga Parasitária
17.
Immunol Lett ; 237: 58-65, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34246712

RESUMO

Type 2 Diabetes is a chronic disease resulting from insulin dysfunction that triggers a low-grade inflammatory state and immune impairment. Leishmaniasis is an infectious disease characterized by chronic inflammation resulted from the parasite's immunomodulation ability. Thus, due to the delicate immune balance required in the combat and resistance to Leishmania infection and the chronic deregulation of the inflammatory response observed in type 2 diabetes, we evaluated the response of PBMC from diabetic patients to in vitro Leishmania amazonensis infection. For that, peripheral blood was collected from 25 diabetic patients and 25 healthy controls matched for age for cells extraction and subsequent experimental infection for 2 or 24 h and analyzed for phagocytic and leishmanicidal capacity by optical microscopy, oxidative stress by GSSG generation, labeling of intracellular mediators by enzyme-Linked immunosorbent assay, and cytokines measurement with cytometric beads array technique. We found that the diabetic group had a higher percentage of infected cells and a greater number of amastigotes per cell. Also, even inducing NF-kB phosphorylation and increasing TNF production after infection, cells from diabetic patients were unable to downregulate NRF2 and generate oxidative stress, which may be associated with the exacerbated levels of IL-6 observed. PBMC of diabetic individuals are more susceptible to infection by L. amazonensis and fail to control the infection over time due to the inability to generate effector microbicidal molecules.


Assuntos
Citocinas/fisiologia , Diabetes Mellitus Tipo 2/imunologia , Leishmania mexicana/patogenicidade , Leishmaniose Cutânea/etiologia , Leucócitos Mononucleares/parasitologia , Fator 2 Relacionado a NF-E2/deficiência , Idoso , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/sangue , Suscetibilidade a Doenças , Feminino , Glutationa/sangue , Hemoglobinas Glicadas/análise , Humanos , Imunocompetência , Técnicas In Vitro , Inflamação , Interleucina-6/fisiologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Masculino , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/fisiologia , Óxido Nítrico/metabolismo , Estresse Oxidativo , Explosão Respiratória , Fator de Necrose Tumoral alfa/fisiologia
18.
PLoS Negl Trop Dis ; 15(7): e0009531, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34292942

RESUMO

The leishmanin skin test (LST) has been used for decades to detect exposure and immunity to the parasite Leishmania, the causative agent of the neglected tropical disease leishmaniasis. In the LST, Leishmania antigen (leishmanin) is intradermally injected into the forearm. In an individual who has been previously infected, a delayed-type hypersensitivity (DTH) reaction results in a measurable induration at the site of the injection, indicating that previous exposure to Leishmania has resulted in the development of cell-mediated immunity. LST positivity is associated with long-lasting protective immunity against reinfection, most notably as reported for visceral leishmaniasis (VL). Despite efforts over the past few decades, leishmanin antigen is no longer produced under good manufacturing practice (GMP) conditions anywhere in the world. Consequently, the use of the LST in epidemiological studies has declined in favor of serological and molecular tests. In this review, we provide a historical overview of the LST and justification for the reintroduction of leishmanin. A GMP-grade leishmanin can be used to detect immunity in vivo by the LST and can be investigated for use in an interferon-γ release assay (IGRA), which may serve as an in vitro version of the LST. The LST will be a valuable tool for surveillance and epidemiological studies in support of the VL elimination programs and as a surrogate marker of immunity in vaccine clinical trials. METHODS: A review of the literature was conducted using PubMed as the primary database, with MeSH terms "leishmanin skin test" OR "Montenegro test" OR "Montenegro skin test." Articles written in English that describe the history or standardization of leishmanin, the use of leishmanin in an IGRA, or the use of the LST in epidemiological studies or vaccine trials were prioritized in our appraisal of the literature.


Assuntos
Antígenos de Protozoários/análise , Leishmania/isolamento & purificação , Leishmaniose Cutânea/diagnóstico , Doenças Negligenciadas/diagnóstico , Testes Cutâneos/métodos , Animais , Humanos , Imunidade Celular , Leishmania/imunologia , Leishmania/fisiologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Doenças Negligenciadas/imunologia , Doenças Negligenciadas/parasitologia
19.
Acta Trop ; 221: 106018, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34157292

RESUMO

Leishmania (Leishmania) amazonensis is an important etiological agent of American cutaneous leishmaniasis (ACL) in Brazil. The species causes a large spectrum of clinical manifestations in humans and dogs, ranging from cutaneous, cutaneous diffuse, mucocutaneous, and visceral involvement, however, the factors that drive the development of different disease forms by the same species are not yet fully known. In the present work, it was systematically reviewed the studies addressing phenotypic and genotypic characteristics of Leishmania (L.) amazonensis isolates causing cutaneous and visceral clinical frames in humans and dogs, comparing the results observed. For this, four research databases were searched for the following keywords: (Leishmania amazonensis AND visceral leishmaniasis) AND (tropism OR virulence OR visceralization OR adaptations OR mutation OR clinical presentation OR resistance OR survival OR wide spectrum). The results revealed that the complexity disease seems to involve the combination of genetic factors of the parasite (as modifications in molecules related to the virulence and metabolism) and also of the host's immune background and status. Nonetheless, the exact mechanism that leads to different clinical manifestations between strains of the same species is still uncertain and future studies must be developed to better elucidate this phenomenon.


Assuntos
Leishmania , Leishmaniose Cutânea , Leishmaniose Mucocutânea , Leishmaniose Visceral , Animais , Cães , Genótipo , Humanos , Leishmania/genética , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/veterinária , Leishmaniose Mucocutânea/imunologia , Leishmaniose Mucocutânea/veterinária , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/veterinária , Fenótipo
20.
PLoS Negl Trop Dis ; 15(6): e0009448, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34106920

RESUMO

BACKGROUND: In Mali, cutaneous leishmaniasis (CL) and filariasis are co-endemic. Previous studies in animal models of infection have shown that sand fly saliva enhance infectivity of Leishmania parasites in naïve hosts while saliva-specific adaptive immune responses may protect against cutaneous and visceral leishmaniasis. In contrast, the human immune response to Phlebotomus duboscqi (Pd) saliva, the principal sand fly vector in Mali, was found to be dichotomously polarized with some individuals having a Th1-dominated response and others having a Th2-biased response. We hypothesized that co-infection with filarial parasites may be an underlying factor that modulates the immune response to Pd saliva in endemic regions. METHODOLOGY/PRINCIPAL FINDINGS: To understand which cell types may be responsible for polarizing human responses to sand fly saliva, we investigated the effect of salivary glands (SG) of Pd on human monocytes. To this end, elutriated monocytes were cultured in vitro, alone, or with SG, microfilariae antigen (MF ag) of Brugia malayi, or LPS, a positive control. The mRNA expression of genes involved in inflammatory or regulatory responses was then measured as were cytokines and chemokines associated with these responses. Monocytes of individuals who were not exposed to sand fly bites (mainly North American controls) significantly upregulated the production of IL-6 and CCL4; cytokines that enhance leishmania parasite establishment, in response to SG from Pd or other vector species. This selective inflammatory response was lost in individuals that were exposed to sand fly bites which was not changed by co-infection with filarial parasites. Furthermore, infection with filarial parasites resulted in upregulation of CCL22, a type-2 associated chemokine, both at the mRNA levels and by its observed effect on the frequency of recruited monocytes. CONCLUSIONS/SIGNIFICANCE: Together, our data suggest that SG or recombinant salivary proteins from Pd alter human monocyte function by upregulating selective inflammatory cytokines.


Assuntos
Brugia Malayi/imunologia , Proteínas de Insetos/imunologia , Monócitos/parasitologia , Phlebotomus/imunologia , Saliva/imunologia , Imunidade Adaptativa , Animais , Células Cultivadas , Quimiocina CCL22/genética , Quimiocina CCL22/metabolismo , Coinfecção , Doenças Endêmicas , Filariose/complicações , Filariose/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Imunidade Celular , Leishmaniose Cutânea/complicações , Leishmaniose Cutânea/imunologia , Lipopolissacarídeos/toxicidade , Mali , Monócitos/fisiologia , RNA Mensageiro , Proteínas Recombinantes , Glândulas Salivares , Linfócitos T Auxiliares-Indutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...